New Advances in Immune System Health

Lee Carroll, BSc, BHSc (WHM)
Integria Healthcare Ltd and Standard Process® sponsor these webinars to provide health care information to practitioners and to provide them the opportunity to hear about the views, recommendations and experiences of other practitioners. Health-related information provided here is not a substitute of medical advice.

Integria, Standard Process and the speaker, Lee Carroll, have not evaluated the legal status of any products (except for MediHerb and Standard Process), services or recommendations with respect to state or federal laws, including scope of practice. Integria, Standard Process and Lee Carroll do not and cannot accept responsibility for errors or omissions or for any consequences from applications of the information provided and makes no warranty, expressed or implied, with respect to the information provided.
Cellular Health

Key Cytoprotective Pathways

- Nrf2/ARE
- Sirt1 or Sirtuin-1
- Heat shock proteins (HSPs)
Heat Shock Proteins (HSPs)

- Found in the cells of all living things:
 - Bacteria
 - Fungi
 - Plants
 - Animals

- Fundamental to cell survival

HSP Discovery 1962

Drosophila – Fruit fly
Heat Shock Factor (HSF)

- HSF1 is master switch \(\rightarrow\) Heat shock protein (HSP)
- HSF1 is a primary integrator of transcriptional responses during stress
- Cellular homeostasis
- HSF1 also involved in development, metabolism and aging

Normal Cellular Conditions

- HSPs are involved in cellular housekeeping
- Act as molecular chaperones to assist in the folding of newly synthesized proteins
- Prevent protein aggregation
- Degrade unstable and misfolded proteins
- Transport proteins between cellular compartments
- Insert proteins into membranes

Stressful Cellular Conditions

- Stress induced activation of HSF1 induces up-regulation of HSPs
- HSPs maintain cellular homeostasis
- HSPs develop and regulate cellular survival functions
- Over expression of HSP is protective

Stressful Cellular Conditions

- Heat
- Low oxygen
- pH extremes
- Nutrient deprivation
- Oxidative stress

- Natural chemicals
- Exposure to inflammatory cytokines
- Naturally occurring heavy metals

Different HSP Families

- HSP 100: Cytosol, mitochondria
- HSP 90: Cytosol, endoplasmic reticulum (ER)
- HSP 70: Cytosol, mitochondria, ER
- HSP 60: Cytosol, mitochondria
- HSP 40: Cytosol
- Small HSP: Cytosol

HSP70

- Most conserved of all HSP families
- Constitutive and inducible
- Key stress HSP
- Regulates apoptosis
- Profound effects on immune and inflammatory pathways and immune signaling within and outside the cell

Intracellular Effects of HSP70 on Immune System Pathways

- Decreases NFkappaB leading to decreased levels of TNF, IL-1 and Matrix Metalloproteinase (MMP) MMP9 and MMP2
- Decreases iNOS and levels of free radicals
- Decrease MMP progressing from inactive to active forms
- Overall the effects generally serve to suppress or dampen immune system responses

Extracellular Effects of HSP70 on Immune System Pathways

- HSPs act like cytokines and can modulate immune system responses\(^1\),\(^2\)

Extracellular Effects of HSP70 on Immune System Pathways

- HSP released by stressed, challenged or necrotic cells
- Act as Danger signals activating innate immune system responses
- Secretion of pro-inflammatory cytokines and chemokines
- Dendritic cell maturation
- Possibly activating Tregs which have anti-inflammatory properties by suppressing the immune responses to other antigens

Summary

- Proper expression of HSPs under normal and stressed conditions is essential for optimal cellular health and health of the whole organism
- HSP expression is linked to maintaining good health
- HSPs play important roles in both innate and acquired immune system function
- HSPs are important to healthy aging and longevity

Thank You